Model selection procedure for high-dimensional data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

Model Selection in Gaussian Regression for High-dimensional Data

We consider model selection in Gaussian regression, where the number of predictors might be even larger than the number of observations. The proposed procedure is based on penalized least square criteria with a complexity penalty on a model size. We discuss asymptotic properties of the resulting estimators corresponding to linear and so-called 2k ln(p/k)-type nonlinear penalties for nearly-orth...

متن کامل

Methods for regression analysis in high-dimensional data

By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...

متن کامل

Feature Selection for High-dimensional Integrated Data

Motivated by the problem of identifying correlations between genes or features of two related biological systems, we propose a model of feature selection in which only a subset of the predictors Xt are dependent on the multidimensional variate Y , and the remainder of the predictors constitute a “noise set” Xu independent of Y . Using Monte Carlo simulations, we investigated the relative perfor...

متن کامل

Attribute Selection for High Dimensional Data Clustering

We present a new method to select an attribute subset (with few or no loss of information) for high dimensional data clustering. Most of existing clustering algorithms loose some of their efficiency in high dimensional data sets. One possible solution is to use only a subset of the whole set of dimensions. But the number of possible dimension subsets is too large to be fully parsed. We use a he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Analysis and Data Mining

سال: 2010

ISSN: 1932-1864

DOI: 10.1002/sam.10088